N-ARYL SULFONYL HYDRAZIMIDATES -HYDRAZONES OF ESTERS

Paul G. Williard*, Lawrence A. Grab Department of Chemistry, Brown University, Providence, Rhode Island 02912

and James P. Springer* Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065

Abstract: The ease of preparation and the potential synthetic utility of the N-aryl sulfonyl hydrazimidates is described and the stereochemistry of one of these compounds is unambiguously assigned by X-ray crystallography.

Although facile tautomerization of the hydrazide 1 to the hydrazimidic acid 2 appears possible, evidence exists documenting only the hydrazide tautomer 1. ¹ This equilibrium is analogous to the amide 3 to imidic acid 4 interconversion. However, a considerable body of information has accumulated concerning both the preparations and the reactions of imidate esters 5. Equilibration of 5 (R'= alky1) to the N-aikyl amide is not observed under mild conditions due to a strong covalent bond to oxygen. Under forcing conditions though even the 0-alkyl and especially the 0-aryl imidates (5 R'=alkyl or aryl) are known to isomerize to the corresponding N-substituted amides via a reaction known as the Chapman rearrangement. 3

		r .		3	5,6		ст ₃ с(ос	12 ^{un} 2 ^{uun} 2 ^{ur}	3/3	сн ₃ с (0	снон ₂ оси СН ₃	¹ 3 ⁾ 3
CH.3	CH3 2 60	, 11 , 4 , 2 ^{NH} N 3		CH ³	502 ^{MH} N ³	12 3 11 	et al a state of the state of t	5,6 4 So ₂ NH _N 3	13 11 11 1	2 13		
	10	сн ₃ сосн ₃ 2		10		сн ₃ сн ₃	10	1 ~ CH ₃ COCH	I ₂ CH ₂ OCH	¹ 2 ^{CH} 3		
	11,12	14	11,1	12 1	5	11,12	10		1	1,12	16	
= <u></u>	^{7,8} ^{cH3,5}	÷ و	-12 4, ²	13,5,6	ς γ	, , , , , , , , , , , , , , , , , , ,	5 , 6		8, ⁶	CH3,5,6	+	
CH ₃		NH ^N 3	Gif	So ₂ NH _N ³	- 13 C	R S S S S S S S S S S S S S S S S S S S	0,01H 3	13 14 15 	CH	SO ₂ M	H 3 1	3 14 /
		¹³	3	¹ 3 / ¹³	⁴¹ 2 ⁴¹³	6113	1 2	¹ 2 ⁴¹ 2 ⁴¹ 2 ⁴⁵	n	^{dn3} ^{dn}	3 CCH 3	
P	3-1 C-2	C-3	C-4	c-5,6	c-7,8	C-9	c-10	c-11,12	C-13	C-14	c-15	Solvent ^e
15	5.1 165.2	53 8	143.6	129.5	128.7	136,8	21.3	ł	I	I	1	DMSO
15	5.6 152.0	64.1	142.7	129,2	127.5	136.6	20.9	14.8	ł	I	1	DMSO
15	5.0 166.4	68.2	143.8	129.3	128.3	135.2	21.4	66.6 66.0	I	1	1	cDCL ₃
15	5 . 0 163 . 4	53 . 4	141.7	139、9	131.4	133.0	20.5	23.1	1	I	ł	DMSO
15	5.2 163.0	61.7	142.0	139.8	131 4	133.2	20.4	23.0	14.0	I	ł	DMSO
15	5.3 164.8	68,5	142.9	140.5	131.9	133.8	20.8	23.4	66.6	64.0	15.0	Acetone
15	5.6 162.3	71.1	142.4	140.5	131.9	133.8	20 \$7	23.3	74.8	58.6	16.2	DMSO
pq	11	12		13	2	14	1		10		16	
g Point	147-149 ⁰ C	145-	147°c	94–97 ⁰ C	: 13	36-137 ⁰ C	165-	-167°c	84-36 ⁰	с I:	35-138 ⁰ (
	51% ^c	62	%c	662°		582°	80	32 ^d	482 [°]		94% ^d	

A much less well investigated functionality is that of the hydrazimidate ester ξ .⁴ We have recently prepared a variety of N-aryl sulfonyl derivatives of ξ . In this paper we wish to report the preparations and physical properties of some of these compounds.

A most straightforward preparation of the N-aryl sulfonyl hydrazimidates § (R'=alkyl, R"= H, R'"-SO₂aryl) is effected simply by dissolution of an appropriately substituted aryl sulfonyl hydrazine in an excess of trialkyl orthoacetate. Occasionally a little gentle warning is required to obtain a completely homogenous solution. After stirring the reaction at room temperature for approximately one half to one and one half hours a high yield of the N-aryl sulfonyl hydrazimidate χ is obtained by filtration of the precipitated product from the excess ortho ester.

Table I lists the different hydrazimidate esters that we have prepared by this procedure. In addition the 13 C-NMR spectra and the yields of purified compounds are given. An important conclusion which we drew from the 13 C-NMR spectra of the purified compounds is that they can be obtained exclusively as a single isomer. It was not possible to determine spectrally whether the two heteroatoms exist in the Z- or E- orientation (8 or 9) with respect to one another about the carbon nitrogen double bond. Hence we undertook an X-ray crystal structure determination to answer this question.

The mesitylene sulfonyl hydrazimidate 10 derived from tri(2-ethoxyethyl) orthoacetate crystallized from hexanes/ethyl acetate in the monoclinic space group P2₁/n. The measured cell constants of a=7.690(1) Å, b=15.375(2)Å, c=14.862(1) Å and B=97.91(1)^o produced a calculated density of 1.25 g/cm³ for four molecules in the unit cell. The reflection data were collected on a Syntex diffractometer using the ω -scan collection technique and CuK_a radiation (λ =1.5418Å). Before Lorentz-polarization corrections, 1946 of 2468 unique reflections (79%) with 26 \leq 114^o were judged observed. No absorption correction was made. The structure was solved by the MULTAN programs.⁵ Thermal anisotropic full matrix least squares refinement was applied to all nonhydrogen atoms. The positions of all hydrogens were calculated and refined by full-matrix least squares to a final R factor of 0.057.⁶ An ORTEP diagram of the hydrazimidate 10 appears on the following page with all non-hydrogen atoms shown. This analysis unambiguously shows that crystalline hydrazimidate 10 exists exclusively in the E configuration.

Based upon the similarity of the chemical shifts of the set of carbon atoms which exists in all of the hydrazimidates found in Table I, we believe that all of our purified compounds in Table I exist as E isomers. We are continuing to investigate some reactions of these novel esters with the hope of successfully applying some recent modifications of the Bamford-Stevens reaction to these derivatives.

(8)
$$CH_3^{-C} - CR$$
 $Ar - SO_2^{-NH} N$
 $CH_3^{-C} - CR$ $CH_3^{-C} - CR$ (9)

Z-isomer

E-isomer

Acknowledgement: PGW and LAG are pleased to acknowledge the support of this investigation through funds provided by the Research Corporation. PGW also wishes to thank Professor G.B. Carpenter for assistance.

<u>References</u> and <u>Notes</u>

- See, H. Paulsen and D. Stoye in "The Chemistry of Amides", ed. J. Zabicky, J. Wiley & Sons, NY, 1970, pp 515-600.
- R. Rogers and D.G. Neilson, <u>Chem. Reviews</u>, <u>61</u>, 179 (1961); W. Seeliger, E. Anfderhaan, W. Diepers, R. Feinauer, R. Nehring, W. Thier, and H. Hellmann, <u>Angew. Chem. Int. Ed. Engl.</u>, <u>5</u>, 875 (1966); S.R. Sandler and W. Karo in "Organic Functional Group Preparations Org. Chem. Monographs", Vol. 12-II, Academic Press, NY, 1972, pp 268-300.
- 3. J.W. Schulenberg and S. Archer, Org. Reactions, Vol. 14, 1-51, (1965).
- Few other substituted hydrazimidates (or alternatively hydrazonates) are reported as follows: cf A.F. Hegarty, J.A. Kearney and F.L. Scott, JCS <u>Perkin Trans</u>., II, 1422 (1973); A.J. Elliott, M.S. Gibson, M.M. Kayser and G.A. Pawelchak, <u>Can</u>. J. <u>Chem</u>. <u>51</u>, 4115 (1973); M.F. Betkouski and W. Lwowski, JCS <u>Chem</u>. <u>Commun</u>. 932 (1973); A.M. Foster and W.C. Agosta, J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>., <u>94</u>, 5777 (1972). We wish to thank a referee for complementing this list.
- 5. P. Main, S.E. Hull, L. Lessinger, G. Germain, J-P Declercy, M.M. Woolfson, "MULTAN 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data": Univ. of York, York, England
- J.M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson, S.R. Hall, "The X-Ray System, Version of June, 1972; No. TR-192"; Computer Science Center: Univ. of Maryland, College Park, MD, 1972.

(Received in USA 23 March 1981)